Rabu, 16 Desember 2020

Sejarah, Definisi dan Cara Kerja Algoritma Divide and Conquer

 

Sejarah Algoritma Devide dan Conquer

Sejarah divide and conquer Divide and Conquer dulunya adalah strategi militer yang dikenal dengan nama divide ut imperes. Sekarang strategi tersebut menjadi strategi fundamental di dalam ilmu komputer dengan nama Divide and Conquer. pengertian

Divide: membagi masalah menjadi beberapa upa-masalah yang memiliki kemiripan dengan masalah semula namun berukuran lebih kecil (idealnya berukuran hampir sama),

Conquer: memecahkan (menyelesaikan) masing-masing upa-masalah (secara rekursif), dan

Combine: mengabungkan solusi masing-masing upa-masalah sehingga membentuk solusi masalah semula.

Obyek permasalahan yang dibagi : masukan (input) atau instances yang berukuran n seperti: - tabel (larik), - matriks, - eksponen, - dll, bergantung pada masalahnya. Tiap-tiap upa-masalah mempunyai karakteristik yang sama (the same type) dengan karakteristik masalah asal, sehingga metode Divide and Conquer lebih natural diungkapkan dalam skema rekursif. Perkembangan Algoritma Divide and Conquer Algoritma divide and conquer sudah lama diperkenalkan sebagai sumber dari pengendalian proses paralel, karena masalah-masalah yang terjadi dapat diatasi secara independen. Banyak arsitektur dan bahasa pemrograman paralel mendesain implementasinya (aplikasi) dengan struktur dasar dari algoritma divide and conquer. Untuk menyelesaikan masalah-masalah yang besar, dan dibagi (dipecah) menjadi bagian yang lebih kecil dan menggunakan sebuah solusi untuk menyelesaikan problem awal adalah prinsip dasar dari pemrograman/strategi divide and conquer.

Divide and conquer adalah varian dari beberapa strategi pemrograman topdown, tetapi keistimewaannya adalah membuat sub-sub problem dari problem yang besar, oleh karena itu strategi ini ditunjukkan secara berulang-ulang (recursively), didalam menerapkan algoritma yang sama dalam sub-sub problem seperti yangditerapkan pada masalah aslinya (original problem). Sebagaimana prinsip dasar algoritma perulangan dibutuhkan sebuah kondisi untuk mengakhiri perulangan tersebut. Biasanya untuk mengecek apakah problem sudah cukup kecil untuk diselesaikan dengan metode secara langsung. Mungkin dari segi ilustrasi kita, bahwa proses-proses pada komputer paralel tentunya memiliki proses/problem/job yang cukup kompleks sehingga harus dipecah-pecah menjadi sub-sub problem. Selain dibutuhkan sebuah “kondisi”, juga diperlukan “fase divide” untuk membagi/memecah problem menjadi sub-sub problem yang lebih kecil, dan “fase combine“ untuk menggabungkan kembali solusi dari sub-sub problem kedalam solusi dari problem awalnya.

Sejarah divide and conquer Divide and Conquer dulunya adalah strategi militer yang dikenal dengan nama divide ut imperes. Sekarang strategi tersebut menjadi strategi fundamental di dalam ilmu komputer dengan nama Divide and Conquer. pengertian

Divide: membagi masalah menjadi beberapa upa-masalah yang memiliki kemiripan dengan masalah semula namun berukuran lebih kecil (idealnya berukuran hampir sama),

Conquer: memecahkan (menyelesaikan) masing-masing upa-masalah (secara rekursif), dan

Combine: mengabungkan solusi masing-masing upa-masalah sehingga membentuk solusi masalah semula.

Obyek permasalahan yang dibagi : masukan (input) atau instances yang berukuran n seperti: - tabel (larik), - matriks, - eksponen, - dll, bergantung pada masalahnya. Tiap-tiap upa-masalah mempunyai karakteristik yang sama (the same type) dengan karakteristik masalah asal, sehingga metode Divide and Conquer lebih natural diungkapkan dalam skema rekursif. Perkembangan Algoritma Divide and Conquer Algoritma divide and conquer sudah lama diperkenalkan sebagai sumber dari pengendalian proses paralel, karena masalah-masalah yang terjadi dapat diatasi secara independen. Banyak arsitektur dan bahasa pemrograman paralel mendesain implementasinya (aplikasi) dengan struktur dasar dari algoritma divide and conquer. Untuk menyelesaikan masalah-masalah yang besar, dan dibagi (dipecah) menjadi bagian yang lebih kecil dan menggunakan sebuah solusi untuk menyelesaikan problem awal adalah prinsip dasar dari pemrograman/strategi divide and conquer.





Divide and conquer adalah varian dari beberapa strategi pemrograman topdown, tetapi keistimewaannya adalah membuat sub-sub problem dari problem yang besar, oleh karena itu strategi ini ditunjukkan secara berulang-ulang (recursively), didalam menerapkan algoritma yang sama dalam sub-sub problem seperti yangditerapkan pada masalah aslinya (original problem). Sebagaimana prinsip dasar algoritma perulangan dibutuhkan sebuah kondisi untuk mengakhiri perulangan tersebut. Biasanya untuk mengecek apakah problem sudah cukup kecil untuk diselesaikan dengan metode secara langsung. Mungkin dari segi ilustrasi kita, bahwa proses-proses pada komputer paralel tentunya memiliki proses/problem/job yang cukup kompleks sehingga harus dipecah-pecah menjadi sub-sub problem. Selain dibutuhkan sebuah “kondisi”, juga diperlukan “fase divide” untuk membagi/memecah problem menjadi sub-sub problem yang lebih kecil, dan “fase combine“ untuk menggabungkan kembali solusi dari sub-sub problem kedalam solusi dari problem awalnya.

Pseudocode diatas adalah sebagai acuan dari strategi divide and conquer, tetapi dalam implementasinya ada beberapa diferensiasi dari bentuk diatas yang akan digunakan. Sebelum masuk ke pokok pemrograman dengan “Divide and Conquer strategy/algorithm”, ada 4 hal penting yang harus dipahami dalam strategi ini yaitu branching factor, balance, data dependence of divide function dan sequentiality.

Branching Factor

Branching factor dalam algoritma divide and conquer adalah jumlah dari subproblem yang akan dibagi dari sebuah problem awal. Ini adalah langkah nyata dari algoritma divide and conquer, didalam proses pembagian yang sebenarnya, jumlah dari branching factor harus 2 atau lebih, karena jika tidak problem tidak bisa dibagi. Banyak jenis algoritma ini termasuk pula algoritma komputasi geometric yang memiliki branching factor berjumlah 2.

Balance

Sebuah algoritma divide and conquer dikatakan balance jika problem awal dibagi menjadi sub-sub problem dengan ukuran yang sama. Yang artinya jumlah dari keseluruhan ukuran subproblem sama dengan ukuran problem awal (initial problem). Algoritma Mergesort dan binary tree, dan sama halnya dengan algoritma reduksi & prefix sum adalah beberapa contoh algoritma divide and conquer yang seimbang (balance).

Data Dependence of Divide Function

Algoritma divide and conquer memiliki sebuah fungsi pembagian terhadap data yang memiliki ketergantungan, artinya jika ukuran relatif dari sebuahsubproblem tergantung pada proses input datanya. Ini adalah salah satu ciri dari algoritma yang tidak seimbang, salah satu contohnya adalah algoritma quicksort yang akan membagi subproblem dengan fungsi data-dependent divide.

Control Parallelism or Sequentiality

Algoritma divide and conquer dikatakan berurutan (sequential) jika subproblem dieksekusi sesuai dengan perintah program. Paralelisasi dari algoritma divide and conquer yang terurut pertama kali didefinisikan oleh Mou’s Divacon[Mou90], yang terjadi ketika hasil dari salah satu sub-eksekusi diperlukan oleh subeksekusi yang lain. Dalam kasus ini hasil dari subtree pertama diberikan (passing) kepada proses komputasi subtree kedua, supaya hasil akhir tersebut bisa digunakan sebagai nilai awalnya, tetapi sekarang ini contoh diatas tidak dapat dijadikan ilustrasi lagi karena teknologi komputer paralel yang semakin canggih dan kompleks.


Definisi Algoritma Devide dan Conquer

Dalam ilmu komputer, Algoritma divide and conquer adalah paradigma desain algoritma yang didasarkan pada rekursi multi-cabang. Algoritme bagi-dan-taklukkan bekerja dengan memecah masalah secara rekursif menjadi dua atau lebih sub-masalah dari jenis yang sama atau terkait, hingga masalah ini menjadi cukup sederhana untuk diselesaikan secara langsung.

Cara Kerja Algoritma Devide dan Conquer

Contoh sederhana : Misalkan, untuk menghitung total jumlah dari bilangan-bilangan yang ada di dalam sebuah list, kita dapat menggunakan perulangan sederhana

nums = [1, 2, 3, 5, 6, 7, 19, 28, 58, 18, 28, 67, 13]
total = 0

for i in range(0, len(nums)):
    total = total + nums[i]

print(total) # 255

Algoritma perulangan yang digunakan pada kode di atas memang sederhana dan memberikan hasil yang benar, tetapi terdapat beberapa masalah pada kode tersebut, yaitu perhitungan dilakukan secara linear, yang menghasilkan kompleksitas O(n). Hal ini tentunya cukup ideal untuk ukuran list kecil, tetapi jika ukuran list menjadi besar (beberapa Milyar elemen) maka perhitungan akan menjadi sangat lambat. Kenapa perhitungannya menjadi lambat? Karena nilai dari total tergantung kepada kalkulasi nilai total sebelumnya. Kita tidak dapat melakukan perhitungan total dari depan dan belakang list sekaligus, sehingga kita dapat mempercepat perhitungan dua kali lipat. Dengan kode di atas, kita tidak dapat membagi-bagikan pekerjaan ke banyak pekerja / CPU!

Lalu apa yang dapat kita lakukan? Langkah pertama yang dapat kita lakukan adalah menerapkan teknik rekursif untuk membagi-bagikan masalah menjadi masalah yang lebih kecil. Jika awalnya kita harus menghitung total keseluruhan list satu per satu, sekarang kita dapat melakukan perhitungan dengan memecah-mecah list terlebih dahulu:

 def sums(lst):
    if len(lst) >= 1:
         return lst[0]

    mid = len(lst) // 2
    left = sums(lst[:mid])
    right = sums(lst[mid:])

    return left + right

print(sums(nums)) # 255 

Apa yang kita lakukan pada kode di atas?

  1. Baris if len(lst) >= 1 memberikan syarat pemberhentian fungsi rekursif, yang akan mengembalikan isi dari list ketika list berukuran 1 (hanya memiliki satu elemen).
  2. Baris mid = len(lst) // 2 mengambil median dari list, sebagai referensi ketika kita membagi list menjadi dua bagian.
  3. Baris left = sum(lst[:mid]) dan selanjutnya membagikan list menjadi dua bagian, dengan nilai mid sebagai tengah dari list.

Singkatnya, setelah membagikan list menjadi dua bagian terus menerus sampai bagian terkecilnya, kita menjumlahkan kedua nilai list tersebut, seperti pada gambar berikut:

Cara Kerja Algoritma Devide n Conquer

Apa kelebihan pendekatan dengan membagi-bagikan masalah ini? 

Dengan menggunakan bahasa dan library yang tepat, kita dapat membagi-bagikan setiap bagian rekursif (left = ... dan right = ...) ke satu unit kerja baru, yang dikenal dengan nama thread. Mekanisme pada sistem operasi atau compiler kemudian akan membagi-bagikan tugas pembagian dan perhitungan lanjutan agar dapat dijalankan secara paralel, misalnya dengan membagikan tugas ke dalam beberapa core prosesor, atau bahkan ke dalam mesin lain (jika terdapat sistem dengan banyak mesin).

Dengan membagi-bagikan pekerjaan ke dalam banyak unit, tentunya pekerjaan akan lebih cepat selesai! Teknik memecah-mecah pekerjaan untuk kemudian dibagikan kepada banyak pekerja ini dikenal dengan nama divide and conquer.

Kesimpulan :

Algoritma divide and conquer sudah lama diperkenalkan sebagai sumber dari pengendalian proses parallel, karena masalah-masalah yang terjadi dapat diatasi secara independent. Banyak arsitektur dan bahasa pemrograman parallel mendesain implementasinya (aplikasi) dengan struktur dasar dari algoritma divide and conquer.

Divide and Conquer secara umum terbagi dalam tiga fase, divide yakni membagi masalah kedalam sub-sub masalah yang lebih kecil, conquer yakni menyelesaikan sub-sub masalah secara rekursif, dan combine menggabungkan hasil dari penyelesian sub-sub masalah menjadi penyelesaian yang dikehendaki Terdapat empat hal pada strategi “divide and conquer” : branching factor, balance, data dependence of divide function dan sequentiality.

 

Algoritma
Algoritma Devide and Conquer
Sejarah Algoritma Devide and Conquer
Cara Kerja Algoritma Devide and Conquer
Definisi Algoritma Devide and Conquer 

Nama             : M HENDRO JUNAWARKO
NPM               : 18312215
Fakultas         : http://ftik.teknokrat.ac.id/
Universitas     : https://teknokrat.ac.id/


Tidak ada komentar:

Posting Komentar